skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qader, Mohiuddin Abdul"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract In the pre-big data era, many traditional databases supported spatial queries via spatial indexes. However, modern applications are seeing a rapid increase of the volume and ingestion rate of spatial data. Log-structured Merge (LSM) tree is used by many big data systems as their storage structure in order to support write-intensive large-volume workloads, which are usually only optimized for single-dimensional data. Research has studied how spatial indexes can be supported on LSM systems, but focused mainly on the local index organization, that is, how data is organized inside a single LSM component. This paper studies various aspects of LSM spatial indexing, including spatial merge policies, which determine when and how spatial components are merged. Three stack-based and one leveled merge policies have been studied, which have been implemented on a common big data system Apache AsterixDB. The write and read performance on various workloads is evaluated, and our findings and recommendations are discussed. A key finding is that Leveled policies underperform other stack-based merge policies for most types of spatial workloads. 
    more » « less